合作机构:阿里云 / 腾讯云 / 亚马逊云 / DreamHost / NameSilo / INWX / GODADDY / 百度统计
探索性数据分析(EDA)是数据科学家用来分析和调查数据集并总结其主要特征的一种方法,通常采用数据可视化技术。我们可以说EDA是通过创建可视化和摘要来调查和理解数据集的过程。EDA是我们询问数据问题的一种方式,可以找出关于数据的所有信息,并理解它为什么是这样的(即识别趋势、模式、异常等)。
在这篇文章中我们介绍EDA中常用的9个图表,并且针对每个图表给出代码示例。
显示分类变量的分布。可视化数据集中每个类别的频率或计数。
import seaborn as sns
import matplotlib.pyplot as plt
data = sns.load_dataset('tips')
sns.countplot(x='day', data=data)
plt.title('Count of Tips by Day')
plt.show()
TOP